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I. INTRODUCTION  

Accurate tracking of orientation is essential for many 

applications, such as robotics and virtual reality. In robotics, it 

is important for accurately determining the end effector 

orientation in manipulation tasks and object interaction in 

navigation tasks. However, orientation estimated using inertial 

sensors called Inertial Measurement Unit (IMU) data in 

vulnerable to various errors, including sensor noise, biases, and 

other environmental factors that lead to inaccurate estimations. 

We combine the accelerometer and gyroscope readings from 

the IMU to estimate the 3D orientation of a rotating body using 

discrete-time quaternion kinematics. Further, the 4D 

orientations are optimized using stochastic gradient descent 

constrained on a unit radius hypersphere Riemann manifold. 

This algorithm adjusts the quaternions based on a constrained 

optimization function involving angular velocity and 

acceleration from the inertial measurements resulting in a more 

precise estimate of the orientation. The approach has potential 

to improve the performance of robotic and virtual reality 

systems allowing them to perform the respective tasks at higher 

precision. One such application is demonstrated in the paper 

where we use optimized orientation estimates and images 

captured from a camera attached to the rotating body and stich 

a 360º panorama image.  
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II. PROMBLEM FORMULATION 

We formulate the orientation tracking problem using multi-
objective constraint optimization problem. We have the angular 

velocity 𝜔𝑡 ∈ ℝ3, angular acceleration 𝑎𝑡  ∈ ℝ3  measurements 

in the IMU frame, quaternions 𝑞𝑡 ∈ ℍ∗ to denote body-frame 
orientations at time 𝑡. The tracking problem can be broken down 
into: 

a) Quaternion kinematics motion model: Assuming a 
unit quaternion at initial time step, the goal is to predict 
next time-step quaternion q

t+1
 on the current time step 

given the current time stamp 𝑞𝑡 , angular velocity 𝜔𝑡 
from the IMU and difference in time stamps 𝜏𝑡 . We 
denote the motion model as 𝑓(𝑞𝑡 , 𝜏𝑡𝜔𝑡) 

b) Acceleration observation model: Since the body is 
rotating with an angular velocity, acceleration 
measured in the world frame of reference ([0, 0, −𝑔]) 
differs from the acceleration 𝑎𝑡. The goal is to calculate 
the oriented or transformed acceleration in the body 
frame. We call it observation model and denote it by 
ℎ(𝑞𝑡) 

 

 

 

Figure 1 Data collection setup involving inertial and camera sensor 

 

c) Constrained optimization of orientation: Since we 
have measurements from the accelerometer (𝑎𝑡) and 
gyroscope (𝜔𝑡), we want to simultaneous optimize the 
motion model 𝑓(𝑞𝑡 , 𝜏𝑡𝜔𝑡)  and observation model 
ℎ(𝑞𝑡). We formulate the optimization function 𝑐(𝑞1:𝑇) 
to estimate and optimize the orientation trajectory 𝑞1:𝑇 
using projected gradient descent on a unit radius 
hypersphere manifold for Riemann optimalization. 

 

Finally, we demonstrate the applications of an accurate 
orientation tracking by constructing a panoramic image from 
RGB camera image over time based on the body orientations 
𝑞1:𝑇 

III. TECHNICAL DETAILS 

 
In the following section, we dive deep into the models discussed 
in the previous section and discuss the approach to orientation 
tracking and panorama generation.  

 

A. Calibration of IMU data 

The IMU gives raw A/D values and cannot be physically 

interpreted before scaling. Further, we need to remove the bias 

from the raw measurements and scale the corresponding value 

to convert to physical units. 

 
value = (raw-bias) scale_factor 

 



 

 

Accelerometer : We calculate the bias on first 500 values for 

the accelometer. For the scale factor we use the following 

equation  

𝑠cale_factor = 
𝑉𝑟𝑒𝑓

1023 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
   

 

We use a reference voltage of 3300 mV and accelerometer 

sensitivity of 300 mV/g. Further we do corrections to the 

reported accelerometer reading since IMU 𝐴𝑥and 𝐴𝑦 direction 

is flipped (due to device design), so respective positive 

acceleration in body frame will result in negative acceleration 

reported by the IMU 

 

 

Gryoscope : We calculate the bias on first 500 values for the 

gryscope. For the scale factor we use the following equation 

𝑠cale_factor =
𝜋𝑉𝑟𝑒𝑓

1023 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 180
 

 

We use a reference voltage of 3300 mV and gryoscope 

sensitivity of 3.33 mV. Further we do corrections to the 

reported accelerometer reading since IMU 𝐴𝑥and 𝐴𝑦 direction 

is flipped (due to device design), so respective positive 

acceleration in body frame will result in negative acceleration 

reported by the IMU. 

 

B. Quartenion Kinematics Motion Model 

Quaternion motion model is used to estimate the orientation of 

body over time (expressed in unit quaternion 𝑞𝑡 ∈ ℍ∗) using 

the IMU angular velocity 𝜔𝑡 ∈ ℝ3 (in body-frame coordinates) 

We use quaternions, specifically, for building the motion model 

and expressing orientations owing to gimbal lock leading to 

singularities in 3D rotation matrix. In continuous time, the 

orientation of the body can be updated using the following 

equation:  

 

�̇�(𝑡) = 𝑞(𝑡) ∘ [0,
𝜔(𝑡)

2
]                                                            (1) 

 

where ∘ is the quaternion product and [0,
𝜔(𝑡)

2
] is the quaternion 

representation of angular velocity. In discrete time, the 

orientation of the body at the next step can be predicted as: 

 

𝑞𝑡+1 = 𝑓(𝑞𝑡 , 𝜏𝑡𝜔𝑡) ≔ 𝑞𝑡  ∘ 𝑒𝑥𝑝 ([0,
𝜏𝑡𝜔𝑡

2
])                    (2) 

 

where 𝜏𝑡 is the time difference between consecutive time steps 

and 𝑒𝑥𝑝(.) is the exponential function. Here, we assume that 𝜔𝑡 

is constant angular velocity in [𝑡, 𝑡 + 1).  

 

To track the orientations of the rigid body (without 

optimization), we initialize the initial time step quaternion 𝑞0 

with an identity quaternion. We run discrete time quaternion 

kinematic to estimate quaternion sequence over time 𝑞1:𝑇 using 

equation angular velocities and time stamps from the IMU in 

equation 2. We further convert this quaternion sequence into a 

sequence of roll, pitch and yaw angles over time and plot them 

against VICON data used as the ground truth.  
 

 

Figure 3: Tracking results with Euler integration and comparison 

with Vicon data on dataset “1” 



C. Observation Model 

Acceleration observation model is used to estimate the body 

frame acceleration 𝑧𝑡  ∈ ℝ3  of the rotating body. Since the 

body is undergoing rotation, the acceleration of the body in the 

world frame [0, 0, −𝑔]  would differ from the acceleration 

measured in the body-frame coordinate system. The hypothesis 

in building the observation model is that acceleration measured 

in the body frame 𝑎𝑡  ∈ ℝ3 should agree with the gravity 

acceleration (acceleration in world coordinate frame) after it is 

transformed to the IMU frame using orientation 𝑞𝑡 . 

 

𝑧𝑡 = ℎ(𝑞𝑡) = 𝑞𝑡
−1 ∘ [0, −𝑔𝑒3] ∘ 𝑞𝑡                                       (3) 

 

D.  Constrained optimisation of orientation 

We formulate the optimization problem to estimate the 

quaternion trajectory 𝑞1:𝑇  based on the motion model (2) and 

the observation model (3). The cost function of the problem is 

defined as 

 

𝑐(𝑞1:𝑇) ≔
1

2
∑ || log(𝑞𝑡+1

−1 𝑓(𝑞𝑡 , 𝜏𝑡, 𝜔𝑡)) ||2

𝑇−1

𝑡=0

+
1

2
∑ ||𝑎𝑡 − ℎ(𝑞𝑡)||2

𝑇

𝑡=1

 

 

 

The cost function used in the optimization problem consists of 

two terms: 

a) Error from Motion Model: It measures the error 

between the estimated orientation and the motion model 

prediction and is based on the relative rotation between the 

predicted orientation and the estimated orientation. The term 

involving the error from motion model is involves using 

logarithmic map from quartenion difference in 𝐻∗ to recover a 

Hthis rotation vector.  

b) Error from Observation Model: It measures the sum of 

the norm of the residual error between the measured 

acceleration from accelerometer 𝑎𝑡  and observation model 

ℎ(𝑞𝑡) in ℝ3 across the time sequence 1: 𝑇 

 

Since it involves simultaneous minimization of two error terms, 

there is a trade-off in the cost function that arises from the 

balance between the two terms. While initializing the 

parameters of the cost function, the error from the motion 

model is zero. However, using quaternions initialized from the 

motion model may reflect poorly on the quality of the estimates 

of the observation model leading to a large error in the 

observation model prediction. Minimizing the error from just 

model might lead to a large error in the other model. The 

optimization problem tries to find a balance between the two 

terms in the cost function so that both the motion model and 

observation model predictions are accurate.  

 

To resolve the trade-off between the motion model and 

observation model predictions can be adjusted based on how 

much we “trust” the measurements from the accelerometer or 

gyroscope. Although not experimented here, we could assign a 

different weight to the cost terms interpreted as a measure of 

how much we trust the gyroscope vs accelerometer 

measurements (e.g., which ones are noisier). 

 

We have the constrained optimization problem 
𝑚𝑖𝑛
𝑞1:𝑇

𝑐(𝑞1:𝑇) 

𝑠. 𝑡. ||𝑞𝑡||
2

 =  1 

 

Since the rotation quaternions that represent rotation in 3D 

space have a unit norm, the optimization problem is constrained 

as the quaternions 𝑞𝑡  must remain unit norm throughout the 

optimization. The unit norm constraint corresponds to the 

rotation quaternion 𝑞𝑡 lying on a unit sphere in ℍ∗ 

 

Since the rotation quaternions lie on a unit radius hypersphere, 

it can be a considered as a type of Riemann manifold. We use 

Riemannian Stochastic Gradient Descent (RSGD) [1] for the 

constrained optimization. Considering an SGD update of the 

form in the Euclidean space  

 
𝑞𝑡

𝑖+1 ← 𝑞𝑡
𝑖 − α∇𝑞1:𝑇

𝑐 

 

where α  is the leaning rate and ∇𝑞1:𝑇
𝑐  is the gradient of the 

objective function 𝑐(𝑞1:𝑇). On the Riemann manifold (ℳ, ρ), 

the RSGD re-defines the update  

 

𝑞𝑡
𝑖+1 ← 𝑒𝑥𝑝(−𝛼ℎ(𝑞1:𝑇)) 

 

where ℎ(𝑞𝑡 ) ∈  𝒯𝓆ℳ  denotes the orthogonal projection of 

gradient of 𝑐(𝑞1:𝑇) at 𝑞1:𝑇 on the tangent space 𝒯𝓆ℳ. Further, 

we use a first order approximation of exponential map 

𝑒𝑥𝑝(. ) using a retraction function ℛ: 𝒯𝓆ℳ →  ℳ that maps 

ℎ(𝑞𝑡) on the tangent space to manifold ℳ.  

 

Let 𝑛 ∈ 𝒯𝓆ℳ denote the unit vector along ℎ(𝑞𝑡) on the tangent 

space. We update the quaternions 𝑞𝑡
𝑖+1 using the following 

formulation 

 
𝑞𝑡

𝑖+1 = 𝑞𝑡
𝑖  𝑐𝑜𝑠 ( ||ℎ(𝑞𝑡)||) + 𝑛  𝑠𝑖𝑛 ( ||ℎ(𝑞𝑡)||) 

 

 

 
 

Figure 4: Gradient step via Exponential Map [2] 



E. Stitching panaroma 

 

We generate the panorama by projecting the cartesian 

coordinates of the camera images to a unit radius sphere and 

reproject the spherical coordinates to a cylinder of unit radius. 

A summary of the steps involved in generating the panorama is 

presented here: 

 

a) For the spherical coordinates, we use the geographical 

coordinate system (GCS) [3] using which where we extract the 

latitude (θ) and longitudes (ϕ) of the images points centered at 

a circle of a unit radius (𝑟) in camera coordinate frame. Using 

a horizontal and vertical field of view of 60 degree and 45 

respectively, we adopt a convention where θ and ϕ lies in the 

range [−
π

6
,

π

6
] and  [−

𝜋

8
,

𝜋

8
].  

 

b) We convert the spherical coordinate to cartesian 

coordinates the camera frame using the following conversion 

approach [4] 

𝑥 = 𝑟 𝑐𝑜𝑠 θ 𝑐𝑜𝑠 ϕ 

𝑦 = − 𝑟 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜙 

x = − r 𝑠𝑖𝑛 θ 

 

c) For each of the camera image at time t, we find the 

orientation value (𝑞𝑡) at nearest time stamp and extract rotation 

matrix (𝑅(𝑞𝑡)) for transformation from the camera coordiante 

frame (𝑃𝐶) to world coordinate frame 𝑃𝑤  

 
𝑃𝑤 = 𝑅𝐶𝑃𝐶 + 𝐶𝑤 

 

where 𝐶𝑊 is the translation [0, 0, 0.1] in the world coordinate 

frame.  

 

d) Further, we convert the cartesian coordinates (𝑥, 𝑦, 𝑧) 

in the world frame to spherical coordinates (θ, ϕ, 𝑟) and re-

project them to a sphere of unit radius. We inscribe the sphere 

in a cylinder so that a point (θ, ϕ, 1) on the sphere has a height 

θ on the cylinder and longitude ϕ on the sphere. 

 

θ = 𝑎𝑟𝑐𝑠𝑖𝑛 (
−𝑧

𝑟
) 

ϕ = 𝑎𝑟𝑐𝑡𝑎𝑛 (
−𝑦

𝑥
) 

𝑟 = √𝑥2 + 𝑦2 

 

e) Finally, we unwrap the cylinder to surface to a 

rectangular image with width 2π radians and height π radians.  

 

IV. RESULTS 

 

We present the orientation tracking and panorama generation 

results in the appendix. The results on the training set are 

available in Appendix A. to Appendix I. and results from the 

test set are available in the Appendix J. to Appendix K. For 

 

 
Figure 5: Total cost (above) and motion model (cost) against 

optimization iteration steps     

 

running orientation tracking, we initialize quaternion at time 

step 𝑡1  with [1,0,0,0]  and introduce slight perturbation of 

0.0001 while calculating exponential and logarithmic maps of 

the quaternions. We experimented with perturbation of 

different order values and found that we count introduce 

perturbations only as less as 0.000001 as introducing 

perturbation of lesser order, would blow up our cost and 

gradient values. Further, we observed that it would be a better 

strategy to perform computations with double-precision (float-

64) against the default single-precision (float-32) used in 

modern day solvers.  

 

During the calibration step, we used first 500 values of each of 

the dataset. While performing Euler integration in the motion 

model, we found that motion model is sensitive to abrupt 

changes in roll, pitch or yaw values (Appendix C and D). We 

used a step size or learning rate of 0.01 while performing 

gradient steps. For each of the datasets we observed 

convergence in total cost values with increase in motion model 

cost (as expected) as we increase the gradient steps. We observe 

high initial cost and high motion model cost (at near 

convergence of total cost) for dataset “5”, “dataset “6” and 

dataset “9” for which we infer that there is high noise both in 

accelerometer and gyroscope. This can be confirmed from the 

plots in Appendix E, F and I. Optimization of orientations does 

not help since observation cost remains high for such datasets 



at near convergence. For datasets “1”, “2”, “8” and “9”, we 

observed that the motion model cost diverges relatively less 

while showing convergence in optimization model. Finally, we 

observe changes in the panorama plots before and after 

convergence. For instance, in dataset “8”, we can approximate 

the rigid body undergoing rotation around “z” axis due to 

relatively less values for roll and pitch values. As expected, it 

should a horizontal panorama accounting for images captured 

while rotating in the x-y plane.  

 

V. FUTURE WORK 

 

As a part of future work, one could experiment with relative 

weight values assigned to motion model and observation 

model optimization. Further, it remains to be seen whether 

calibrating with higher number of sampled in noisier dataset 

influences results of Euler integration. One could also 

experiment with adaptive optimization strategies [5] and 

observe if there is a significant effect on final convergence 
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APPENDIX  

 

A. Results on Dataset: Trainset “1” 

 

 
Orientation Euler angles (Roll, Pitch and Yaw) from vicon, motion 

model (integration) and optimization of orientaion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Panorama before optimization of orientation 

 

 

 
Panorama after optimization of orientation  

 

 
 

 

 

 

 

 

 

 

 

 

 



 

 

B. Results on Dataset: Trainset “2” 

 

 
Orientation Euler angles (Roll, Pitch and Yaw) from vicon, motion 

model (integration) and optimization of orientaion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Panorama before optimization of orientation 

 

 

 
Panorama after optimization of orientation  

 

 
 

 

 

 

 

 

 

 

 

 

 



 

C. Results on Dataset: Trainset “3” 

 

 
Orientation Euler angles (Roll, Pitch and Yaw) from vicon, motion 

model (integration) and optimization of orientation 

 

 

 

 

 

 

 

 

D. Results on Dataset: Trainset “4” 

 

 
Orientation Euler angles (Roll, Pitch and Yaw) from vicon, motion 

model (integration) and optimization of orientation 

 

 

 

 

 

 



 

 

E. Results on Dataset: Trainset “5” 

 

 
Orientation Euler angles (Roll, Pitch and Yaw) from vicon, motion 

model (integration) and optimization of orientation 

 

 

 

 

 

 

 

 

F. Results on Dataset: Trainset “6” 

 

 
Orientation Euler angles (Roll, Pitch and Yaw) from vicon, motion 

model (integration) and optimization of orientation 

 

 

 

 

 

 



 

 

G. Results on Dataset: Trainset “7” 

 

 
Orientation Euler angles (Roll, Pitch and Yaw) from vicon, motion 

model (integration) and optimization of orientation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

H. Results on Dataset: Trainset “8” 

 

 
Orientation Euler angles (Roll, Pitch and Yaw) from vicon, motion 

model (integration) and optimization of orientation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Panorama before optimization of orientation 

 

 

 
Panorama after optimization of orientation  

 

 
 

 

 

 

 

 

 

 

 

 

 



 

 

I. Results on Dataset: Trainset “9” 

 

 
Orientation Euler angles (Roll, Pitch and Yaw) from vicon, motion 

model (integration) and optimization of orientation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Panorama before optimization of orientation 

 

 

 
Panorama after optimization of orientation  

 

 
 

 

 

 

 

 

 

 

 

 

 



 

 

J. Results on Dataset: Testset “10” 

 

 
Orientation Euler angles from the motion model (integration) and 

optimization of orientation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Panorama before optimization of orientation 

 

 

 
Panorama after optimization of orientation  

 

 
 

 

 

 

 

 

 

 

 

 

 



 

 

K. Results on Dataset: Testset “11” 

 

 
Orientation Euler angles (Roll, Pitch and Yaw) from the motion 

model (integration) and optimization of orientation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Panorama before optimization of orientation 

 

 
 

Panorama after optimization of orientation  
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