
Particle Filter SLAM and Texture Mapping
Saksham Jindal

Department of Electrical and Computer Engineering
University of California, San Diego

I. INTRODUCTION

SLAM, which stands for simultaneous localization and
mapping, is a problem of constructing or updating a map
of an unknown environment while simultaneously keeping
track of an agent’s location within it, without any external
information available to the robot except for the observations
and measurements made by the robot. Being able to create
a map of the immediate surroundings of a robot, vehicle, or
vessel, and locating the object within that map is important
for self-driving cars, unmanned aerial vehicles, autonomous
underwater vehicles, home robots etc.

There are many different approaches to SLAM which
include the use of different sensors, observation models,
motion models, and filtering techniques. One of the
approaches, used in this paper, is implemented using Particle
Filter, which utilizes physical sensors and a lidar, determine
the position and orientation of a robot driving around and
build a map of the surrounding. It is probabilistic inference
technique that utilizes a group of particles to represent the
probability distribution of a dynamic system. The Particle
Filter based SLAM method involves two crucial stages
– Prediction and Update. During the Prediction stage,
the motion model is utilized to predict the movement of
each particle. During the Update stage, the observation
model is used updating the map based on the observations
(measurements) by the sensors on the robot.

In this paper, we use data from 4 sensors – Encoder
and Inertial Measurement Units (IMU) for pose update of
the robot, LIDAR scan for building an occupancy grid and
Kinect to create texture mapping of the ground plane. We
discuss the problem formulation in Section II, Technical
Approach in Section III and discussion of results in Section III.

Index Terms—SLAM, particle filter, robotics

II. PROBLEM FORMULATION

SLAM or ”Simultaneous Localization and Mapping” is a
state estimation problem to determine the environment map
m and the robot pose or state xt at each time step t, given
the observations z0, . . . , zt and control inputs u0, . . . , ut�1, in
probabilistic form

p(m,xt|z0:t, u0:t�1) (1)

Motion Model: function f or equivalently probability den-
sity function pf that describes the probability distribution over
the possible future states of the system, given the current
state xt and the control input ut. The output of the motion
model is a probability distribution over the possible next states.
Mathematically, the state xt+1 resulting from applying input
ut at state xt is given by:

xt+1 = f(xt, ut, wt) ⇠ pf (·|xt, ut) (2)
wt = motion noise

The noise in the motion model takes into account the
uncertainty in the prediction of the future state.

Observation Model: The robot senses the environment
to get observation or measurement at each time step t and
updates the map m of the environment . It is a function h or
equivalently probability density function ph that describes the
probability density over the possible measurements zt that
can be obtained from the system, given the current state xt:

zt = h(xt, vt) ⇠ ph(·|xt) (3)
vt = observation noise

We have the following a sequence of following sensor
measurements used for determining the most likely map and
robot pose over time using the combination of motion and
observation model

1) Encoder: gives us information about the linear and
angular motion of the model. It is used to localize or
determine the pose of the robot from the motion model.

2) IMU: gives us information about the angular velocity
and linear acceleration of the robot. It is also used to
determine the pose of the robot.

3) Lidar: gives up infromation of polar coordinates of
the obstacle detected. It is used for as an input for
the observation model and building the map of the
environment.

4) Kinect: contains disparity and RGB maps and building
a texture map of the environment.

A. Localization
Bayes filter [1], also known as recursive Bayesian esti-

mation, is a general probabilistic approach for estimating an
unknown probability density function (here, pdf of state xt



of the robot), recursively over time using incoming measure-
ments (observation model) and a mathematical process model
(motion model) using markov assumptions and bayes rules.
Bayes filter formulates the SLAM problem as a bayesian
inference problem and uses Markov assumptions to induce
a factorization of the joint probability density function of the
states x0:T , observations z0:T , and inputs u0:T�1

1) The state xt+1 only depends on the previous input ut

and state xt and is independent of the history x0:t�1,
z0:t�1, u0:t�1

2) The observation zt only depends on the state xt

The Bayes Filter algorithm used for estimating probability
distribution of state xt of the robot consists of two main steps:
the prediction step and the update step.

1) Prediction step: : In the prediction step, the algorithm
uses the motion prior pdf pt|t(x) and motion model pf to
predict the state of the system at the next time step xt+1, given
the state at the current time step xt and the control input ut.
The prediction step updates the prior probability distribution,
which represents the estimate of the state at the current time
step, to obtain the predicted probability distribution, which
represents the estimate of the state at the next time step.

pt+1|t(x) =

Z
pf (x|s, ut)pt|t(s)ds

2) Update step: In the update step, the algorithm uses
the observation model ph to update the predicted probability
distribution based on the sensor measurements obtained at
the current time step. The update step computes the posterior
probability distribution, which represents the updated estimate
of the state given the current sensor measurements. This
posterior distribution is used as the prior distribution in the
next time step.

pt+1|t+1(x) =
ph(zt+1|x)pt+1|t(x)R
ph(zt+1|s)pt+1|t(s)ds

B. Mapping
Mapping refers to the problem of generating a map of the

environment m from noisy and uncertain sensor observations
z given the state x of the robot. The goal of occupancy grid
mapping is to estimate the posterior probability over time:

p(m|z0:t, x0:t) =
Y

i

p(mi|z0:t, x0:t) (4)

In this equation, m represents the occupancy grid map,
which is a discretized representation of the environment. The
probability distribution p(m|z0:t, x0:t) represents our belief
about the occupancy of each cell in the grid map at time steps
0 through t, given the sensor measurements and robot poses
up to time t. The product over all cells in the occupancy
grid map assumes that the cells are conditionally independent
given the robot trajectory. The distribution of each cell mi

can be modeled individually using sensor observations and
robot poses up to time t, denoted by z0:t and x0:t, respectively.

C. Texture Mapping
Texture mapping refers to projecting 2D texture (3-channel

RGB image) data from the Kinect to the cells of occupancy
grid m of the environment.

In the next section, we will deep dive on the motion model,
observation models and particle filter approach to solve the
problem of SLAM.

III. TECHNICAL APPROACH

We use Particle Filter approach to solve the SLAM problem
discussed in the previous section. It uses a set of particles to
represent the state of the system, each of which represents
a possible state of the system. Each particle is typically
represented by the state µ(k) variable and weight that reflects
its likelihood of being the true state of the system ↵(k). A
particle, represented by, (µ(k), ↵(k)) is a hypothesis that the
state x of the system is µ(k) with probability ↵(k).

We initialize N particles with equal weights 1/N. The
particle filter uses particles with locations µ(k) and weights
↵(k) to represent the probability density functions pt|t and
pt+1|t:

pt|t(xt) =
NX

k=1

↵t|t[k]�(xt � µt|t[k]) (5)

where, �(·) is the Dirac delta function. Here, the weight
↵(k), assigned to each particle k as discrete probability mass
function values evaluated at the location of the particle µ(k).
Using �(·) enables, us to represent the mixture as continuous
space the probability density function.

A. Prediction
The prediction step uses the motion model to update the

positions of each particle at a given time step t. The prediction
step equation is given by

pt+1|t(x) =

Z
pf (x|s, ut)

NX

k=1

↵(k)
t|t �(xt � µ(k)

t|t )ds

=
NX

k=1

↵(k)
t|t pf (x|µ

(k)
t|t , ut) (6)

We use differential drive kinematic model as the motion
model f(·). Since, the object is moving in 2D space, The state
of a system can be represented as x = (x, y, ✓) 2 SE(2). The
motion model can be expressed as:
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where v is the linear velocity and ! is the rotational velocity
(yaw rate), ⌧t is the time interval, and wt is noise term adding
to the state vector.

We use the encoder to get the encoder counts [FR, FL, RR,
RL] corresponding to the four wheels. The right wheels travel
a distance of dr = (FR + RR)/2 ⇤ 0.0022, while the left
wheels travel a distance of dl = (FL+ RL)/2 ⇤ 0.0022. We
have approximation of speed of right wheels vr = dr/⌧ and
left wheels vl = dl/⌧ , where ⌧ is the time interval between 2
consecutive encoder time stamps. The linear speed of the can
be represented as vt = (vr + vl)/2. We obtain the yaw rate !
from the IMU data. Since, the robot is moving in the 2D plane
and do not consider the dynamics of the system, we can ignore
the roll rate, pitch rate and linear acceleration values from the
IMU data. We also notice that the data from encoder and IMU
is not synchronised. During the prediction step, we find the
yaw rate corresponding to the IMU timestamp corresponding
to the encoder timestamp.

For each particle, we use the motion model f(·) to compute
the probability density function µ(k)

t+1|t under control input ut

with added Gaussian noise wt and use this as an approximation
of pf (xt+1|µ(k)

t|t , ut). Also, the prediction step changes only
the particle positions but not their weights.

µ(k)
t+1|t = f(µt+1|t, ut, wt) (8)

↵(k)
t+1|t = ↵(k)

t|t (9)

We experiment with adding a Gaussian noise from the distri-
butions N (0, 0.001), N (0, 0.01) and N (0, 0.05) to translation
components and noise from the distribution from N (0, 0.001)
for the orientation component of the state at each time step
of prediction to account for noise in the encoder. Further, we
also experiment with different noise levels by varying number
of particles in the set {10, 100, 1000}.

B. Updation

The posterior in update step step is obtained by plugging
the prediction pdf from (6) in the update step of Bayes filter
and is given by

pt+1|t+1(xt+1) =
ph(zt+1|xt+1)

P
N

k=1 ↵
(k)
t+1|t�(xt+1 � µ(k)

t+1|t)
R
ph(zt+1|s)

P
N
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/ ph(zt+1|µ(k)
t+1|t) (12)

We use the lidar ranges values which give us the depth r and
✓ of the obstacle in the LIDAR frame. For LIDAR measure-
ments zi, after obtaining the valid range r and angle ✓, we can
calculate the coordinates (xl, yl) of each obstacle encountered
by each LIDAR beam using the following equations:

xl = r cos(✓)

yl = r sin(✓)

These equations give us the location of each LIDAR mea-
surement in the 2D plane, relative to the LIDAR sensor itself.
We first transform these LIDAR measurements from the lidar
frame to the body frame and, further, we transform these points
in the particle’s body frame into our world frame using the
pose estimate of the particle at time t + 1. We constraint
our grid to be of size 50 m x 50 m and exclude any points
encountered outside the grid. The resulting world coordinates
(xw, yw) are then fed into the correlation function to find the
most likely position of the robot in the occupancy grid. We
assume that observation model is proportional to correlation
function and compute the updated weights using correlation
value of each particle based on how well it matches the LIDAR
scan.

ph(zt+1|µk

t+1|t,mt) / exp(corr(mk

t+1,m)) (13)

All k weights ↵(k) are normalized to 1 by softmax over
correlation values.

↵(k)
t+1|t+1 = Softmax(corr(mk

t+1,m)) (14)

We select particle k with the maximum weight ↵(k)
t+1|t+1 as

state xt+1

xt+1 = µ(k)
t+1|t+1

To overcome particle depletion, we use stratified resampling
which adds new particles at locations with high weights and
reduces the particles at locations with low weights. Specifi-
cally, given a particle set (µ(k)

t|t ,↵
(k)
t|t )), resampling is applied

if the effective number of particles is less than N/10

Neff :=
1

P
N

k=1(↵
(k)
t|t )

2
< N/10



is less than a threshold. It ensures that particles are dis-
tributed in regions with high probability density, resulting in
a more accurate estimate of the true state.

C. Mapping
The environment is represented as m 2 RM⇤N and maintain

a probability density function p(m|z0:t, x0:t) over time to
model the occupancy probabilities �t.

We model the map cells mi as independent Bernoulli
random variables and occupancy probabilities as �i,t using
Bayes rule and update the map by accumulating log odd ratio
of �i,t.

mi =

(
+1 (Occupied) with prob. �i,t := p(mi = 1|z0:t, x0:t)

�1 (Free) with prob. 1� �i,t
(15)

Using the above equation, we have

�i,t = p(mi = 1|z0:t, x0:t)

=
1

⌘t
ph(zt|mi = 1, xt)p(mi = 1|z0:t�1, x0:t�1)�i,t�1

=
1

⌘t
ph(zt|mi = 1, xt)p(mi = 0|z0:t�1, x0:t�1)(1� �i,t�1),

where ⌘t is a normalization constant and h(zt|mi, xt) is the
measurement model. The odds of mi updated over time is

o(mi|z0:t, x0:t) =
�i,t

1� �i,t

=
p(h(zt|mi = 1, xt))

p(h(zt|mi = 0, xt))

�i,t�1

1� �i,t�1

= gh(zt|mi, xt)o(mi|z0:t�1, x0:t�1) (16)

We assume a confidence of 80% in the LIDAR measurement
and take gh(1|zi, xt) = 4 and gh(�1|zi, xt) = 0.25. The
update rule for log odds is given by taking logarithm of the
above equation and factorizing the rule under the independence
assumption. Taking the log for both sides of the equation, we
get

�(mi|z0:t, x0:t) = log o(mi|z0:t, x0:t)

= �(mi|z0:t�1, x0:t�1) + log g(h(zt|mi, xt))

= �i,t�1 + log gh(zt|mi, xt) (17)

which is the update rule for log-odds. For each observed
cell i, we decrease the log-odds by log4 if it was observed
free or increase the log-odds by log4 if the cell was observed
occupied. We clip the �i,t�1 between �min and �max to
avoid increasing too much confidence or preventing too much
decrease in log odds.

D. Texture Mapping
We have not covered texture mapping in this paper due

to time constraints. However, we have attempted to work
out the texture mapping and based on our understanding, the
procedure for the same is a follows. We can use disparity

and RGB images from the RGBD dataset to project the pixel
corrdinates from the 2D images to 3D coordinates in the
camera’s optical frame (XO, YO, ZO). The depth camera is
located at (0.18, 0.005, 0.36) m with respect to the robot
center and has orientation with roll 0 rad, pitch 0.36 rad,
and yaw 0.021 rad. We can use this information to generate
transformation BTC for mapping the points from camera frame
to body and, further, projecting them into world frame using
the pose estimate from the previous step. An intermediate
step, would also involve mapping points from optical frame
to camera frame, While we obtain optical coordinates, we
can maintain the RBG color of each of (XO, YO, ZO) as
CO. Finally, we select points whose Z coordinate is below
a threshold of 0.5 which we obtain from LIDAR z coordinate.

XW = WTBBTCCTOXO

CW = CO

IV. RESULTS

We test our approach on 2 datasets - datasets ”20” and ”21”
- and explore the effect of adding more particles and different
Gaussian noise in the motion model.

A. Dead Reckoning Trajectories
The dead reckoning trajectories are obtained by simulating

the motion of the robot with N=1 particle and no added
noise. However, to gauge the effect of adding noise in motion
model, we experiment by adding noise from the distributions
N (0, 0.001), N (0, 0.005), N (0, 0.01), N (0, 0.05), N (0, 0.1),
N (0, 0.5) to the translation component (xt, yt) while adding
a noise from the distribution N (0, 0.001) to the orientation
component ✓t of the state vector.

We observe that there is local drift and global divergence
in the dead reckoning trajectories as the noise level increases.
Particularly, we observed that there is a remarkable deviation
in trajectories when noise in sampled from N (0, 0.1) or
higher standard deviation. The reason for this instability is
that the noise in the motion model introduces uncertainty in
the robot’s actual position and orientation, which accumulates
over time as the robot moves. In comparison to trajectories of
lower noise level, we observed only a local drift in trajectory
when simulated with added gaussian noise from N (0, 0.05).
However, we do not observe a global diverge and trajectory
does not deviate with the path followed by earlier noise levels.

We have included the simulation results on dataset 20 and
21 in the Appendix A and B of this paper.

B. Simultaneous localization and mapping
While increasing the noise level can help to reduce bias

in the robot’s estimate of its position and orientation, it
also increases the variance in the estimate, making it more
uncertain. We believe it could be a good idea to sample



noise from N (0, 0.1) or N (0, 0.5) for the simultaneous
localization and mapping. Our hypothesis was that increasing
the number of particles should reduce the variance in estimate
of the final trajectory. However, adding particles came with
additional bottleneck of linear increase in computational
cost. We test our approach by adding noise levels from 3
distributions N (0, 0.001) (which is equivalent to adding no
noise), N (0, 0.01) and N (0, 0.05) and test out our approach
by increasing particles on log scale. We test our hypothesis by
testing our algorithm by using N=100 and N=1000 particles
for dataset 20 and N=10 and N=100 for the dataset 21.

We observed adding noise may decreases bias in the
trajectoeries and occupancy map and increasing variance in
the trajectory as we increase the noise levels. Particularly,
the robot achieves a loop closure when we added noise from
N (0, 0.01) and N (0, 0.05). However, we also observed that
the adding more noise increases variance in the localization
and mapping measurements. This can be observed by paying
close attention to local drift experienced by the trajectories
and the smoothening of occupany map (the map becomes
more ”fat” and specks inside and around the map reduce).

We observed a deviation in trajectories as we increase the
number particles from N=100 to N=1000 and also observe
that some parts of the map (for N=1000) rotate relative
to their counterpart with lesser number of particles. While
increasing particles from N=10 and N=100 (in dataset 21)
seem to have a better effect on convergence of the state
estimate and occupancy map, the same can not be said about
the effect of increasing particles from N=100 to N=1000 in
the dataset 20. Overall, we believe that a balance between
noise level and number of particles needs to be struck to
achieve the best localization and mapping performance.

We have included the simulation results on dataset 20 and
21 in the Appendix C and D of this paper.

REFERENCES

[1] S. Thrun, W. Burgard, and D. Fox., “Probabilistic robotics” MIT Press,
2005

[2] N. Atanasov, ”Lecture 8: Particle Filter”, ECE276A: Sensing Estimation
in Robotics, 2022



 

Appendix 

A. Dead Reckoning trajectories on dataset 20 with added gaussian noise 

 
          Gaussian Noise with mean 0 and standard deviation 0                          Gaussian Noise with mean 0 and standard deviation 0.001 

 
        Gaussian Noise with mean 0 and standard deviation 0.01                      Gaussian Noise with mean 0 and standard deviation 0.05                           

 
            Gaussian Noise with mean 0 and standard deviation 0.1                      Gaussian Noise with mean 0 and standard deviation 0.5                           

 



B. Dead Reckoning trajectories on dataset 21 with different gaussian noise 

 
            Gaussian Noise with mean 0 and standard deviation 0                     Gaussian Noise with mean 0 and standard deviation 0.001 

 
        Gaussian Noise with mean 0 and standard deviation 0.01                      Gaussian Noise with mean 0 and standard deviation 0.05    

 

 
            Gaussian Noise with mean 0 and standard deviation 0.1                      Gaussian Noise with mean 0 and standard deviation 0.5           

 

 

 



C. Occupancy Map of the environment for Dataset 20 
 

 
 Final map with 100 particles and noise from N(0, 0.001) 

 

 
Final map with 100 particles and noise from N(0, 0.01)                                        Final map with 1000 particles and noise from N(0, 0.01) 
 

 

 
                      Final map with 100 particles and noise from N(0, 0.05)                                        Final map with 1000 particles and noise from N(0, 0.05) 
 

D. Occupancy Map of the environment for Dataset 21 



 

 
Final map with 10 particles and noise from N(0, 0.001)                                        Final map with 100 particles and noise from N(0, 0.001) 

 

 
Final map with 10 particles and noise from N(0, 0.01)                                        Final map with 100 particles and noise from N(0, 0.01) 

 

 
Final map with 100 particles and noise from N(0, 0.05)                                        Final map with 1000 particles and noise from N(0, 0.05) 

 


